If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=448
We move all terms to the left:
3x^2-(448)=0
a = 3; b = 0; c = -448;
Δ = b2-4ac
Δ = 02-4·3·(-448)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{21}}{2*3}=\frac{0-16\sqrt{21}}{6} =-\frac{16\sqrt{21}}{6} =-\frac{8\sqrt{21}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{21}}{2*3}=\frac{0+16\sqrt{21}}{6} =\frac{16\sqrt{21}}{6} =\frac{8\sqrt{21}}{3} $
| x2=4/9= | | x+β=180 | | -3(k+6)-(-4k-6)=9 | | 9x+β=180 | | -8x+4+9x-4=7x-6x+4 | | 7u/9=45 | | |5x+1|=|9x+3| | | 2x+8=6x-14 | | (x)=−2x2+4x+16 | | 1/5x+12=10-12 | | 4x−3=9x+6−5x−9 | | (20k+4)+(33k-9)=360 | | 9b+7=72+b | | (20k+4)+(33k-9)=180 | | b9+7=72+b | | 5(x-7)=2(x+3)-x | | 2x-7/2+x-7/4=x+5/5-1 | | 0.2p+2.4=1.6p−1.2+0.6p | | 12+2(k+3=3k-6 | | 10y+10=3-4y | | x+5/3+x-1/6=2 | | 5x-10=6x-36 | | 4x/5+3=1/5 | | 4/5x+3=1/5 | | 6x-32=2x+15 | | 11/8x+7/4=5/4x | | (x/4)-((x+2)/6)=(x/3) | | 23+3y-7=13y-12-3y | | 13x-191=6x-9 | | 2(x-4)=7x+12 | | x+18=127 | | x-6=5x+26 |